VasoTracker Publications

Papers describing VasoTracker sytems and software. Our continued ability to develop and maintain VasoTracker will depend on more grants, so whether you use a complete VasoTracker system, just some of the components, or the software, please cite our work in your scientific publications.

Publications Citing VasoTracker
  1. VasoTracker 2.0: Coming soon.
  2. Original Pressure Myograph: Lawton, P. F., Lee, M. D., Saunter, C. D., Girkin, J. M., McCarron, J. G., & Wilson, C. (2019). VasoTracker, a Low-Cost and Open Source Pressure Myograph System for Vascular Physiology. Frontiers in Physiology, 10. doi: 10.3389/fphys.2019.00099
  3. Arterial Strip Measurement Algorithm: Wilson, C., Zhang, X., Buckley, C., Heathcote, H. R., Lee, M. D., & McCarron, J. G. (2019). Increased Vascular Contractility in Hypertension Results From Impaired Endothelial Calcium Signaling. Hypertension, 74(5), 1200–1214. doi: 10.1161/HYPERTENSIONAHA.119.13791

Papers Citing VasoTracker

Papers describing VasoTracker use in laboratories across the world.

Publications Citing VasoTracker
  1. Masterova, K. S., Wang, J., Mack, C., Moro, T., Deer, R., & Volpi, E. (2024). Enhancing flow-mediated dilation analysis by optimizing an open-source software with automated edge detection. Journal of Applied Physiology. doi: 10.1152/japplphysiol.00063.2023
  2. Buckley, C., Lee, M. D., Zhang, X., Wilson, C., & McCarron, J. G. (2024). Signalling switches maintain intercellular communication in the vascular endothelium. British Journal of Pharmacology. doi: 10.1111/bph.16366
  3. Ng, Y. Y. H., Dora, K. A., Lemmey, H. A. L., Lin, J., Alden, J., Wallis, L., … Garland, C. J. (2024). Asymmetric Dimethylarginine Enables Depolarizing Spikes and Vasospasm in Mesenteric and Coronary Resistance Arteries. Hypertension, 81(4), 764–775. doi: 10.1161/HYPERTENSIONAHA.123.22454
  4. Zhang, X., Buckley, C., Lee, M. D., MacDonald, M., Wilson, C., & McCarron, J. G. (2024, March 29). Increased TRPV4 channel expression enhances and impairs blood vessel function in hypertension. bioRxiv, 2024.03.27.587031. doi: 10.1101/2024.03.27.587031
  5. Navindaran, K., Kang, J. S., & Moon, K. (2023). Techniques for characterizing mechanical properties of soft tissues. Journal of the Mechanical Behavior of Biomedical Materials, 138, 105575. doi: 10.1016/j.jmbbm.2022.105575
  6. Graaf, M. N. S. de, Vivas, A., Kasi, D. G., van den Hil, F. E., van den Berg, A., van der Meer, A. D., … Orlova, V. V. (2023). Multiplexed fluidic circuit board for controlled perfusion of 3D blood vessels-on-a-chip. Lab on a Chip, 23(1), 168–181. doi: 10.1039/D2LC00686C
  7. Wilson, C., Lee, M. D., Buckley, C., Zhang, X., & McCarron, J. G. (2023). Mitochondrial ATP Production is Required for Endothelial Cell Control of Vascular Tone. Function, 4(2), zqac063. doi: 10.1093/function/zqac063
  8. Woolf, E. K., Lee, S. Y., Ghanem, N., Vazquez, A. R., & Johnson, S. A. (2023). Protective effects of blueberries on vascular function: A narrative review of preclinical and clinical evidence. Nutrition Research, 120, 20–57. doi: 10.1016/j.nutres.2023.09.007
  9. Zhang, X., Lee, M. D., Buckley, C., Hollenberg, M. D., Wilson, C., & McCarron, J. G. (2023). Endothelial PAR2 activation evokes resistance artery relaxation. Journal of Cellular Physiology, 238(4), 776–789. doi: 10.1002/jcp.30973
  10. J. D. Moreira, N., dos Santos, F., Li, J. B., Aletti, F., Irigoyen, M. C. C., & Kistler, E. B. (2023). Enteral administration of the protease inhibitor gabexate mesilate preserves vascular function in experimental trauma/hemorrhagic shock. Scientific Reports, 13(1), 10148. doi: 10.1038/s41598-023-36021-7
  11. Masterova, K. S., Wang, J., Mack, C., Moro, T., Deer, R., & Volpi, E. (2024). Enhancing Flow Mediated Dilation Analysis by Optimizing an Open-Source Software with Automated Edge Detection. Journal of Applied Physiology. doi: 10.1152/japplphysiol.00063.2023
  12. Grainger, N., Shonnard, C. C., Quiggle, S. K., Fox, E. B., Presley, H., Daugherty, R., … Sanders, K. M. (2022). Propagation of Pacemaker Activity and Peristaltic Contractions in the Mouse Renal Pelvis Rely on Ca2+-activated Cl− Channels and T-Type Ca2+ Channels. Function, 3(6), zqac041. doi: 10.1093/function/zqac041
  13. Morton, J. S., Patton, B., Morse, C. J., El Karsh, Z., Rodrigues, L. A., Mousseau, D. D., … Olver, T. D. (2022). Altered cerebrovascular regulation in low birthweight swine. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 267, 111163. doi: 10.1016/j.cbpa.2022.111163
  14. Hoffmann, S., Mullins, L., Rider, S., Brown, C., Buckley, C. B., Assmus, A., … Mullins, J. (2022). Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights. Hypertension, 79(3), e56–e66. doi: 10.1161/HYPERTENSIONAHA.121.18600
  15. dos Santos, F., Li, J. B., Moreira, N. J., Mazor, R., Aletti, F., & Kistler, E. B. (2022). Enteral gabexate mesilate improves volume requirements and autonomic cardiovascular function after experimental trauma/hemorrhagic shock in the absence of blood reperfusion. American Journal of Translational Research, 14(10), 7391–7402.
  16. Cheon, S., Tomcho, J. C., Edwards, J. M., Bearss, N. R., Waigi, E., Joe, B., … Wenceslau, C. F. (2021b). Opioids Cause Sex-Specific Vascular Changes via Cofilin-Extracellular Signal-Regulated Kinase Signaling: Female Mice Present Higher Risk of Developing Morphine-Induced Vascular Dysfunction than Male Mice. Journal of Vascular Research, 58(6), 392–402. doi: 10.1159/000517555
  17. Cheon, S., Tomcho, J. C., Edwards, J. M., Bearss, N. R., Waigi, E., Joe, B., … Wenceslau, C. F. (2021a). Opioids cause sex-specific vascular changes via Cofilin-ERK signaling: Female mice present higher risk of developing morphine-induced vascular dysfunction than male mice. Journal of Vascular Research, 58(6), 392–402. doi: 10.1159/000517555
  18. Higaki, A., Mahmoud, A. U. M., Paradis, P., & Schiffrin, E. L. (2021). Automated Detection and Diameter Estimation for Mouse Mesenteric Artery Using Semantic Segmentation. Journal of Vascular Research, 58(6), 379–387. doi: 10.1159/000516842
  19. Kuszynski, D. S., Christian, B. D., Dorrance, A. M., & Lauver, D. A. (2021). Clopidogrel treatment inhibits P2Y2-Mediated constriction in the rabbit middle cerebral artery. European Journal of Pharmacology, 911, 174545. doi: 10.1016/j.ejphar.2021.174545
  20. Edwards, J. M., Roy, S., Galla, S. L., Tomcho, J. C., Bearss, N. R., Waigi, E. W., … Wenceslau, C. F. (2021). FPR-1 (Formyl Peptide Receptor-1) Activation Promotes Spontaneous, Premature Hypertension in Dahl Salt-Sensitive Rats. Hypertension, 77(4), 1191–1202. doi: 10.1161/HYPERTENSIONAHA.120.16237
  21. Wenceslau, C. F., McCarthy, C. G., Earley, S., England, S. K., Filosa, J. A., Goulopoulou, S., … Webb, R. C. (2021). Guidelines for the measurement of vascular function and structure in isolated arteries and veins. American Journal of Physiology-Heart and Circulatory Physiology, 321(1), H77–H111. doi: 10.1152/ajpheart.01021.2020
  22. Corro-Hernández, R., Aguila-Torres, O., Rios, A., Escalante, B., & Santana-Solano, J. (2022). Computer-assisted image analysis of agonist-mediated microvascular constriction response in mouse cremaster muscle. PLOS ONE, 17(11), e0277851. doi: 10.1371/journal.pone.0277851
  23. Heathcote, H. R., Lee, M. D., Zhang, X., Saunter, C. D., Wilson, C., & McCarron, J. G. (2019). Endothelial TRPV4 channels modulate vascular tone by Ca2+ -induced Ca2+ release at inositol 1,4,5-trisphosphate receptors. British Journal of Pharmacology, 176(17), 3297–3317. doi: 10.1111/bph.14762
  24. Rodríguez-Rodríguez, R., Ackermann, T. N., Plaza, J. A., Simonsen, U., Matchkov, V., Llobera, A., & Munoz-Berbel, X. (2019). Ultrasensitive Photonic Microsystem Enabling Sub-micrometric Monitoring of Arterial Oscillations for Advanced Cardiovascular Studies. Frontiers in Physiology, 10. doi: 10.3389/fphys.2019.00940
  25. Castorena-Gonzalez, J. A., Srinivasan, R. S., King, P. D., Simon, A. M., & Davis, M. J. (2020). Simplified method to quantify valve back-leak uncovers severe mesenteric lymphatic valve dysfunction in mice deficient in connexins 43 and 37. The Journal of Physiology, 598(12), 2297–2310. doi: 10.1113/JP279472
  26. Barabas, P., Augustine, J., Fernández, J. A., McGeown, J. G., McGahon, M. K., & Curtis, T. M. (2020). Ion channels and myogenic activity in retinal arterioles. In W. F. Jackson (Ed.), Current Topics in Membranes (pp. 187–226). Academic Press. doi: 10.1016/bs.ctm.2020.01.008
  27. Lemmey, H. (2019). Investigating myoendothelial signalling mechanisms in resistance arteries [PhD Thesis]. University of Oxford.
  28. Edwards, J. M. (2021). The Role of the Innate Immune System and Resolution of Inflammation in Microvessels from Hypertensive Animals [PhD Thesis]. University of Toledo.
  29. Navindaran, K. S. (2022). Characterization of Mechanical Properties of Soft Tissues Using Sub-Microscale Tensile Testing [PhD Thesis]. San Diego State University.
  30. Du Toit, J. (2021). The role of TRPV4 in flow-mediated inhibition of rat mesenteric collecting lymphatic vessel pumping [Master’s Thesis]. Cumming School of Medicine.
  31. El Karsh, Z. (2021). Exercise training improves cerebrovascular oxidative stress regulation and insulin stimulated vasodilation in juvenile and mature pigs [PhD Thesis]. University of Saskatchewan.

© All Rights Reserved.

Scroll to Top